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Atmospheric dust is a key player in Earth’s climate. It affects the 
planet’s radiative balance directly by reflecting incoming short-
wave solar radiation and absorbing outgoing longwave radiation 
(e.g. Miller et al., 2014). It also influences the climate indirectly 
by acting as condensation nuclei for clouds (e.g. Lohmann and 
Feichter, 2005) and by affecting biogeochemical cycles through 
micronutrient supply to the terrestrial and marine biospheres (Boy 
and Wilcke, 2008; Mahowald, 2011; Yu et al., 2015). Unlike 
greenhouse gases, whose effect on climate is relatively well con-
strained, the uncertainty of aerosols, and mineral dust in particu-
lar, on climate change is comparatively large (Huneeus et al., 
2011; Myhre et al., 2013). This is true for both current and past 
large-scale climatic changes.

The processes of emission, transport and deposition of atmo-
spheric dust and its climatic impacts vary with past and current 
climate and environmental changes. Atmospheric dust is inti-
mately linked to global paleoclimatic change, with exponentially 
higher and lower atmospheric dust loads during colder and 
warmer periods, respectively (e.g. Lambert et al., 2013; Maher 
et al., 2010). Increased or reduced dust concentrations also feed 
back on the climate system through dust’s direct and indirect 
effects. Shaffer and Lambert (2018) recently showed that dust 
loads during glacial maxima may be responsible for a global cool-
ing of 1°C due to combined dust–climate feedbacks. The latest 
Intergovernmental Panel on Climate Change (IPCC) reports sug-
gest a global negative radiative forcing of atmospheric dust on 
global climate and also point out to a relative uncertainty in the 
calculation of that budget (IPCC, 2014). Conversely, Ellis and 
Palmer (2016) argue that dust deposition during glacial times may 
have triggered accelerated melting of ice globally through 
decreasing the earth’s albedo.

Atmospheric dust deposition/flux is also an indicator for arid-
ity and wind system changes. Higher precipitation will wash out 
more dust from the atmosphere (Yung et al., 1996), while stronger 

winds will entrain more and coarser-grained particles from the 
surface (McGee et al., 2010; Van der Does et al., 2016). There-
fore, dust deposition records can be used to reconstruct past wind 
and atmospheric dynamics as well as the activity of dust sources 
(i.e. deserts) (e.g. Albani et al., 2015; De Vleeschouwer et al., 
2014). High uncertainties in reconstructing past dust fluxes, how-
ever, limit our knowledge of the relative contributions of dust 
source changes, wind changes and hydrological cycle changes 
during past times, which translates into highly variable estimates 
of dust deposition. Moreover, in modern times, dust emissions 
have at least doubled over the past two centuries due to 
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anthropogenic influence (Hooper and Marx, 2018; IPCC, 2014; 
Mahowald et al., 2010; Mulitza et al., 2010), with consequences 
that are still uncertain (Kok et al., 2018).

To summarize, climate and dust have mutual interactions and 
one will alter the other in many ways, resulting in a feedback 
paradigm: global climate is affected by atmospheric dust varia-
tions and the generation, transport and deposition of atmospheric 
dust is itself modulated by climate. Studying past and present 
atmospheric dust behaviour and understanding those climate–
dust feedbacks may therefore help forecasting future climate–dust 
interactions. The broad aim of this special issue is to contribute to 
the general goal of a better understanding of dust aerosols by ana-
lysing in detail the evolution and climatic impact of atmospheric 
dust during to the Holocene. It follows the DICE working group 
initiative and guidelines (http://www.pages-igbp.org/working-
groups/global-monsoon/143-working-group/dice/861-dice) in 
compiling a series of past and present-day atmospheric dust 
records from various areas. The first part of the special issue is 
dedicated to the most prominent archives of atmospheric dust that 
are used nowadays: peatlands, ice and loess. Those first papers 
show how it is possible to reconstruct dust deposition fluxes and 
sources and decipher climatic information such as wind regimes, 
positions and intensities in various climatic conditions from sea-
sonal to monsoonal regimes (Hooper et al., 2020; Martínez Corti-
zas et al., 2020; Pratte et al., 2020). While peatlands provide 
detailed and high-resolution chronologies, they are generally lim-
ited to the Holocene or the last glacial termination, whereas loess 
and ice provide a longer prospective. The two papers presented in 
this issue are a perfect example of the source to sink transport of 
dust. Loess from South American Pampas do not only provide a 
reconstruction of past climatic conditions over several MIS (Torre 
et al., 2020), but also provide source characterizations to dust 
deposited in Antarctica (Delmonte et al., 2020). When those 
archives are not available in a given geographical area, lake sedi-
ments can provide an alternative, given specific conditions, to 
disentangle the atmospheric signal from the watershed erosion 
(Arcusa et al., 2020). These contributions about past atmospheric 
dust are closely dependent on present-day dust studies as while 
‘the past is the key to understand our future’, present-day studies 
help validate hypothesis made from past dust archives. They also 
greatly help understanding the processes behind the dust cycle in 
terms of climatic feedbacks, transport and effects on living organ-
isms and ecosystems. The last two contributions of this special 
issue perfectly illustrate those aspects. Cosentino et al. (2020) 
present a very detailed study of the dust deposition in Southern 
South America over the last 14 years and greatly help understand-
ing how dust is generated, transported and deposited over a conti-
nent, whereas Bigelow et al. (2020) contribute to our understanding 
of the importance of atmospheric dust as fertilizer in environ-
ments where nutrients are limited as well as on the availability 
and degradability of dust components that may play an important 
role on metabolic functions of bacteria, at the base of the trophic 
chain of some ecosystems.
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