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The geochemical composition of siliciclastic sediments correlates strongly with grain size. Hence, geochem-
ical composition may serve as a grain-size proxy. In the absence of grain-size variations, geochemical data
of siliciclastic sediments may be used to characterise size-independent processes, i.e., sediment provenance,
weathering, mixing, shape/density sorting and diagenesis. In general, however, geochemical data sets contain
both types of information. In order to formalise interpretation of geochemical data, we propose a mathemat-
ical method to decompose the total geochemical variability of a series of genetically related specimens into a
grain-size dependent (the shared signal) and a grain-size independent part (the residual signal). The former
may serve as a proxy for grain size whereas the latter represents geochemical variability that would have
been observed if all sediments would have had the same grain-size distribution. The two data sets are jointly
decomposed by means of Partial Least Squares (PLS) and orthogonal projection. Subsequently, the presence
of significant grain-size independent geochemical variability in the residual signal is determined in a statis-
tically rigorous manner using a χ2-test. Using a synthetic example, we show that the residual record effec-
tively reveals an imposed provenance signal which could not have been resolved from the geochemical or
grain-size data sets individually.
We analysed the relation between grain size and geochemical composition in three Quaternary marine sed-
iment cores located offshore West Africa and South America (GeoB7920-2, GeoB9508-5 and GeoB7139-2).
Both sites are characterised by biogenic sediment input, in addition to fluvial and aeolian sediment input
from the continent. It was found that all cores show a strong, but different correlation between the mean
grain size and the bulk geochemical composition. These results demonstrate that geochemical grain-size
proxies are empirical and site-specific. It was also found that the geochemical and grain-size data in cores
GeoB7920-2 and GeoB7139-2 do not contain unique information, whereas in core GeoB9508-5 Ti varies in-
dependently from the grain size. This residual Ti-signal correlates with the transport mechanism, as demon-
strated by statistically different values of aeolian and fluvial-dominated sediments. However, a unique
interpretation of this residual signal in terms of the postulated grain-size independent mechanisms could
not be provided without additional information.
We conclude that the proposed model facilitates identification and validation of different element ratios as
grain-size proxies and, more importantly, as proxies for size-independent processes. For this reason, the
model paves the way for rigorous analysis of multi-proxy data, which are widely used in palaeoceanographic
and palaeoclimatic research.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Geochemical analysis is a powerful method of quantifying bulk
sediment properties. It may be used to characterise the composition
of the parent rock, or the climatic-physiographic conditions under
which the sediment was formed (Pettijohn et al., 1987; Johnsson,
1993; Basu, 2003; Weltje and von Eynatten, 2004). Alternatively, it
may be used to assess compositional modifications caused by
msma).
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weathering, sorting, mixing and diagenesis (McLennan et al., 1993;
Nesbitt and Young, 1996; Amorosi et al., 2002; Dinelli et al., 2007;
Pe-Piper et al., 2008). Because geochemical variation typically reflects
the superposition of these factors, independent information is often
required to resolve them individually. This applies specifically to
analysis of clastic sediments, where we can postulate multiple equally
plausible hypotheses explaining the observed compositional data.

It is well known that grain size and geochemical composition of
clastic sediments are highly correlated. The tight connection between
grain size and bulk chemistry is a consequence of the processes which
govern the generation of sediments from crystalline rocks. Chemical
weathering leads to release of unstable elements as solutes, while
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stable elements such as Al remain in the solid phase (e.g., Nesbitt and
Young, 1984). Consider for instance chemical weathering of K-feldspar:

2KAlSi3O8 þ 3H2O→Al2 Si2O5ð Þ OHð Þ4 þ 4SiO2 þ 2K OHð Þ
K‐feldspar þwater→kaolinite þ silica þ solutes

Since kaolinite particles are relatively fine grained, whereas the K-
feldspar grains are of sand size, chemical alteration is accompanied by
textural modification of the sediment. If the K-feldspar and kaolinite
are transported away from their source area and deposited in a sedi-
mentary basin, the resulting product is a sediment with a spatially
variable grain-size distribution. If we sample this material at different
localities, we expect Si/Al of the bulk sediment to correlate positively
with mean grain size. Quite often, the objective of geochemical anal-
ysis is not to approximate grain size, but to provide a unique compo-
sitional fingerprint of the sediment for the purpose of paleoclimate or
provenance reconstruction. In such cases, we would like to eliminate
the size-dependency from our data.

A method to eliminate variation of bulk grain-size distribution from
sediment geochemical analysis is to analyse a narrow size fraction
(Weltje and Brommer, 2011). In the above example, the composition
of a narrow size fraction would be constant across the basin. However,
reality is generally more complicated. If we assume that the extent of
weathering in the source area of the sediment has varied over time,
we expect that the composition of a narrow size fraction extracted
from samples taken at different stratigraphic levels records this varia-
tion. For example, the Si/Al ratio within the sand fraction will correlate
positively with the extent of weathering, whereas the Si/Al ratio of the
clay fractionwill correlate negativelywith the extent of weathering. Be-
cause separation of samples into narrow size fractions is time consum-
ing and expensive, we should try to find more practical ways of
eliminating the grain-size bias from geochemical data.

In marine geosciences it is commonplace to use a so-called multi-
proxy approach to infer paleo-climatological signals. In this approach,
high-resolution records of physical and chemical properties, for ex-
ample grain-size distribution and bulk chemical composition, are
measured on the same sediment core. Subsequently, these data are
displayed side by side to highlight consistency between two data
sets, or to illustrate patterns of variability unique to each data set. A
widely accepted method to select the relevant signals (i.e., the rele-
vant element ratios and/or grain-size parameters) from multivariate
data sets is not yet in place, and the same applies to generic proce-
dures to examine the internal consistency of selected proxies. In
this contribution, we propose a fully quantitative and formal method
for simultaneous analysis of multiple data sets. Our analysis of the re-
lation between the geochemical composition and grain-size distribu-
tion of sediment will serve to illustrate the implications of the
proposed statistical framework for multi-proxy analysis.

2. Material and methods

2.1. Materials

We use three marine soft-sediment cores from the margin off West
African and Chile to investigate geochemical variationwith grain size in
lithogenic sediments. These cores are well suited for testing this varia-
tion since both West Africa and Chile receive a considerable amount
of sediment from the continent, transported by wind and rivers (e.g.,
Sarnthein et al., 1981; Stuut et al., 2007). In addition, both areas are
characterised by strong year-round upwelling, resulting in a consider-
able biogenic sediment input (Haslett and Smart, 2006; De Pol-Holz
et al., 2007).

Cores GeoB9508-5 and GeoB7920-2 were retrieved from the con-
tinental margin off West Africa, and core GeoB7139-2 was retrieved
from the margin off Chile (Fig. 1). Core GeoB9508-5 (15 °30N/
17 °57W, 2384 m water depth) is approximately 9.5 m long and
was obtained during RV Meteor cruise M65/1 (Mulitza and cruise
participants, 2006). Core GeoB7920-2 (20 °45N/18 °35W 2278 m
water depth) is approximately 16 m long and was retrieved during
RV Meteor cruise M53/1 (Meggers and cruise participants, 2002).
The Chilean core GeoB7139-2 (30 ∘12S/71 ∘59W) was retrieved dur-
ing the PUCK expedition on RV Sonne in 2001 (Hebbeln and cruise
participants, 2001) and is approximately 8 m long. In all three cores,
the sedimentswere datedusing stable oxygen isotopes and radiocarbon
dates, which show that they date back to 57 kyr BP (GeoB9508-5;
Mulitza et al., 2008), 118 kyr BP (GeoB7920-2; Tjallingii et al., 2008)
and 65 kyr BP (GeoB7139-2; De Pol-Holz et al., 2007).

Marine sediment cores have served as a valuable source of informa-
tion to infer Late Quaternary variations in paleoclimatic conditions in
both South America (e.g., Lamy et al., 1998) and West Africa (e.g.,
Tjallingii et al., 2008). Climatic conditions have been inferred from
grain-size records (e.g., Holz et al., 2004; Stuut and Lamy, 2004;
Tjallingii et al., 2008) and from geochemical records (e.g., Haslett and
Davies, 2006; Mulitza et al., 2008), in addition to various combinations
of sediment properties (e.g., Kaiser et al., 2008; Romero et al., 2008).

InWest Africa, present-day samples from fluvial and aeolian sources
show that aeolian dust is relatively coarse grained, compared to fluvial
sediment (Gac and Kane, 1986; Stuut et al., 2005). Grain-size variations
in the lithogenic fraction ofmarine cores are therefore considered to re-
flect the transporting mechanism (Sarnthein, 1978; Koopmann, 1981;
Holz et al., 2004; Stuut et al., 2007). Proximal to the source, sediment
with a grain size below 6 μm is typically assumed to be of fluvial origin,
whereas sediment coarser than 6 μm is assumed to be transported by
wind (Koopmann, 1981; Lamy et al., 1998; Holz et al., 2004). Neverthe-
less, if transport distances are relatively long, the typically large grain
size of the aeolian dust may be reduced by proximal to distal fining
(e.g., Weltje and Prins, 2003; Stuut et al., 2005). The same information
(i.e., transporting medium, its energy and transport distance) may be
contained in geochemical signals; Boyle (1983) postulated Al/Ti as a ge-
neric grain-size proxy because it is controlled by the concentration of
heavy minerals transported along with the coarse fraction. For this rea-
son, downcore variations in Al/Ti were considered a proxy for aridity
and/or wind strength (Yarincik et al., 2000).

Besides the shared information, geochemical records are consid-
ered to contain additional information regarding source area charac-
teristics. Sediment that is derived from chemically weathered
terrain typically has high Al and Fe concentrations (Moreno et al.,
2006; Mulitza et al., 2008), which may therefore serve as a proxy
for humidity (Sarnthein, 1978; deMenocal et al., 1993). Schneider
et al. (1997) interpreted elevated Al/K towards the tropics as being
induced by enrichment in kaolinite relative to K-feldspar as a result
of increased chemical weathering intensity. Yarincik et al. (2000)
used the same ratio as a proxy for the amount of illite relative to ka-
olinite which is also considered to be controlled by the intensity of
chemical weathering. Compared to West Africa, the effect of chemical
and physical weathering on the geochemical composition of sedi-
ments from the continent is low, due to short transport distances
and arid climate conditions (Lamy et al., 2000). Because this implies
that the sediments retain their initial composition, geochemical re-
cords from this area may serve as a tracer for parent rock lithology
(Lamy et al., 1998; Klump et al., 2000; Lamy et al., 2000).

2.2. Analytical methods

Samples for grain-size analysis were acquired every 5 cm for cores
GeoB9508-5 (n=191) and GeoB7920-2 (n=330), and every 2 cm in
core GeoB7139-2 (n=389). The siliciclastic sediment fraction was iso-
lated by dissolving carbonate, organic matter and biogenic opal in HCl,
H2O2 and NaOH, respectively. The samples were heated with about
300 mg of Na4P2O7·10H2O directly before measuring to avoid the for-
mation of aggregates in the fine-grained fraction. The grain-size distri-
bution was determined with a Coulter LS200 laser particle sizer,
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Fig. 1. Location of the cores used in this study. Core GeoB7139-2 was retrieved off the Chilean coast (inset A), whereas cores GeoB9508-5 and GeoB7920-2 were retrieved off the
West-African coast (inset B). The insets are derived from the ETOPO1 topographical map (Amante and Eakins, 2008).
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which detects grains in the range from 0.4 to 2000 μm (i.e., between 11
and -1 phi-units) (Fig. 2).

All cores have been scanned with an Avaatech core scanner (e.g.,
Richter et al., 2006) at a 2 cm resolution, a source current of 10 kV and
ameasurement time of 30 s. Themeasured XRF spectra were converted
to a record of net element intensities using the WinAxil software pack-
age (Vekemans et al., 1994). In order to be able to convert the element
intensities to concentrations, quantitative geochemical analysis of
powdered sediment samples was carried out with a portable Spectro
Xepos Analyzer (Wien et al., 2005). For core GeoB9508-05, 229 samples
were geochemically analysed, whereas the geochemical reference data
sets of GeoB7920-2 and GeoB7139-2 comprise 168 and 20 samples,
respectively.

2.3. Data pre-processing

Quantitative calibration of the XRF core scanning records was per-
formed using the log-ratio calibration equation (LRCE) (Weltje and
Tjallingii, 2008). The predictive power of each alternative calibration
model (i.e., linearmodels with a certain denominator element) is empir-
ically quantified by the taking the median of the squared discrepancies
between the predicted and the reference geochemical composition. We
calculate these discrepancies using leave-one-out cross-validation
(LOOCV) (Geisser, 1993). As a result, they account for all factors influenc-
ing the deviation between XRF core scanning records and destructive
analysis (e.g., difference in analysed sample volume). A detailed descrip-
tion of these factors is provided by Tjallingii et al. (2007).

Based on the Aitchison distance between predicted and reference
composition, we select the optimal denominator element for each core,
which are Si (GeoB7139-2), Al (GeoB7920-2) and Fe (GeoB9508-5). For
these calibration models, the LOOCV median squared discrepancies of
the different log-ratios are shown in the upper diagonal of Table 1. The
lower diagonal shows half of the width of 95% confidence limits, which
are directly derived from the variances in the upper diagonal (see
Weltje and Tjallingii, 2008).

To analyse the relation between grain size and geochemical compo-
sition, we use samples of which both grain size and geochemical com-
position were measured. Because the resolution of the grain size
analysis is different from that of the core scan, a subset of the grain-
size and bulk geochemical data meets these requirements, namely 185
(GeoB7139-2), 163 (GeoB7920-2) and 92 (GeoB9508-5) samples.

In order to make application of log-ratio analysis to the grain size
data possible, we removed the zero-valued channels. In this study, all
channels of the grain-size distribution which contain a zero in any of
the observations are amalgamated with an adjacent channel that con-
tains only positive values. Generally this leaves more than 80% of the
channels unchanged. Given the high level of redundancy in grain-size
data (Weltje and Prins, 2003), we consider this step as having a negligi-
ble effect on the information content of the data.
3. Modelling approach

3.1. Conceptual model

From a theoretical perspective, the information provided by tex-
tural and geochemical data may be subdivided into (1) information
shared by the two records, (2) information unique to the geochemical
record, and (3) information unique to the grain-size record. The par-
titioning of the geochemical and grain-size variability into these three
independent components is illustrated in Fig. 3A. The significance of
each of these three parts will be discussed below.

If a series of sediment samples has been derived from a single
source area in which the extent of chemical weathering did not vary
significantly over time, most variation in bulk chemical composition
may be attributed to fractionation during entrainment, transport,
and deposition. Hence, if it were possible to apply a “grain-size correc-
tion” to the bulk chemical composition of this hypothetical data set, the
residual geochemical composition would not show any significant
downcore variation. Such a one-to-one correspondence between
grain-size and geochemistry implies that the geochemical record carries
no unique information and the bulk chemical composition can be accu-
rately predicted from the grain-size distribution and vice versa.

In reality this one-to-one correspondence between composition
and grain size will be an exception, and a single grain-size distribu-
tion may correspond to different geochemical signatures. Various
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mechanisms for generating size-independent geochemical variability
may be envisaged (see Fig. 3):

1. Chemical weathering: if the degree of chemical weathering varies
over time at a single locality, the residual Si/Al ratio will correlate
positively with the extent of weathering. Similar trends will be
present in other element ratios (Calvert and Pederson, 2007;
Xiong et al., 2010).

2. Hydraulic/aerodynamic sorting: sediment-forming minerals in the
silt to sand fraction span a wide range of densities (from 2.6 to
about 5.0 g/cm3) and shapes (spherical to platy). Mineral grains
which are susceptible to size-independent fractionation (i.e., de-
pletion and enrichment not mirrored in the bulk grain-size distri-
bution) must have a combination of density and shape which
deviates strongly from the bulk, and be present in small propor-
tions. Chemical elements which exclusively reside in suchminerals
(e.g., Ti and Zr) are therefore excellent tracers of fractionation.

3. Mixing: if different source areas shed sediments with distinct geo-
chemical signatures within a given grain-size range, the residual
geochemical signal represents the variation of mixing coefficients
of these compositionally distinct sediment types.
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Fig. 2. Grain size distributions of samples from cores GeoB7139-2 (A), GeoB7920-2 (B)
and GeoB9508-5 (C).
4. Diagenesis: if the degree of diagenetic modification varies across a
series of samples with similar grain-size distributions, a size-
independent signal will be generated. Examples include dissolution
and precipitation at different stratigraphic levels within a core.

For the sake of completeness, one should also consider occurrence
of grain-size variations which do not correspond to geochemical
variability (Fig. 3), which might be the case if rocks have been me-
chanically ground by glaciers, or mechanically weathered by wind-
action. However, even under glacial or extremely arid conditions,
geochemical variability was found to be accompanied by grain-size
variations (Nesbitt and Young, 1996; Solano-Acosta and Dutta,
2005). We therefore consider this a theoretical possibility rather
than something which merits further investigation.

3.2. Statistical model

If we can remove the shared variability from grain size and geochem-
ical data (the gray part in Fig. 3A), the residual recordmay reveal patterns
which cannot be distinguished in the original record. We propose a ge-
neric approach to achieve this, based on the assumption that amonotonic
relation exists between grain size and geochemical composition. Grain-
size distributions and geochemical compositions are both compositional
in nature (values are non-negative by definition, and the sum over all
grain size classes, or all chemical constituents, should equal unity),
which requires that we model them as log-ratios (Aitchison, 1986).
More specifically, we use a centred log-ratio (clr) transformation so
that classical multivariate methods can be used to explore their relation.

Linear models of log-ratio transformed variables (i.e., log-ratio linear
models) are compatible with trends of compositional variability of sedi-
ments induced by variation in weathering conditions and grain size
(e.g., von Eynatten et al., 2003; Tolosana-Delgado and von Eynatten,
2008). Exceptions to this compatibility were raised by Tolosana-Delgado
and von Eynatten (2010)who foundnonlinearity in the ‘intrinsic’ relation
between chemistry and composition, derived from chemical analyses of
narrow size fractions. However, since we focus only on the relation be-
tweenbulk grain size andbulk chemistry,which is typicallymore smooth,
we consider the log-ratio linear suitable to model their relation.

A graphical illustration of the model we introduce in this contribu-
tion is shown in Fig. 3B. The model establishes two bases (coordinate
systems) which maximise the joint variability of grain size and geo-
chemical composition. We derive these bases using Partial Least
Squares (PLS) (e.g., see Martens and Naes, 1989). By projecting both
datasets onto their basis vectors, we obtain the scores on each vector.
Table 1
The upper diagonal shows the median variances between the observed geochemistry
and the geochemistry predicted on the basis of the XRF core scan. The lower diagonal
shows the 95% confidence limits corresponding to these residual variances.

Al Fe K Si Ti

GeoB7139-2
Al – 0.0020 0.0003 0.0014 0.0019
Fe 0.0784 – 0.0032 0.0008 0.0035
K 0.0322 0.0995 – 0.0016 1.7470
Si 0.0660 0.0504 0.0695 – 0.0012
Ti 0.0759 0.1039 2.3280 0.0621 –

GeoB7920-2
Al – 0.0024 0.0039 0.0072 0.0039
Fe 0.0792 – 0.0068 0.0157 0.0056
K 0.1030 0.1319 – 0.0049 0.0041
Si 0.1383 0.2034 0.1139 – 0.0154
Ti 0.1025 0.1211 0.1049 0.1990 –

GeoB9508-5
Al – 0.0046 0.0032 0.0015 0.0021
Fe 0.1119 – 0.0033 0.0056 0.0033
K 0.0930 0.0954 – 0.0019 0.0032
Si 0.0642 0.1239 0.0716 – 0.0055
Ti 0.0750 0.0949 0.0931 0.1223 –
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If the scores of the grain-size and geochemical data on the k-th basis
vector correlate significantly, we project both data sets on their
corresponding bases to obtain their shared signals. Subsequently, the
variability unique to each data set (i.e., the residual signal) is derived
by subtracting the shared signals from their corresponding rawdata set.

The number of orthogonal components that are removed is a hyper-
parameter, andmay take on any value between zero (the rawgeochem-
ical, and grain-size data) andN−1, withN being theminimumnumber
of variables (either grain-size classes or chemical elements). For every
order k, a χ2-test is used to decide whether the residual variance of a
log-ratio of elements X and Y (i.e., log(X/Y)) deviates significantly
from the error variance of the corresponding geochemical signal.
More detailed information about the mathematical model may be
found in the Appendix.

4. Synthetic examples

To illustrate the working principle of the model, we will discuss
two synthetic examples. These examples reflect limiting cases; one
dataset (dataset 1) reflects the case where compositional variability
is only induced by grain size variations, whereas the other dataset
(dataset 2) reflects the case where compositional variability is in-
duced by both grain-size variations and provenance.

4.1. Synthetic example 1

The first step in acquiring a synthetic dataset is stochastic simulation
of grain-size distributions. These distributions are constructed to be
lognormal, with a random mean and a standard deviation that is
proportional to the mean. We impose a standard deviation of fine-
grained sedimentswhich is larger than that of coarse-grained sediments.
The fact that these two parameters are perfectly correlated implies that
the rank of the grain-size data is one. In order to simulate bulk chemical
composition, we postulate a log-ratio linear relation between composi-
tion and grain size (see Fig. 4A). This relation must be transformed
back into proportions using the inverse clr-transformation in order to
obtain the function which depicts element concentrations as a function
of grain size (see Fig. 4B). The bulk chemical composition is then
obtained by multiplying this function with the grain size distribution.
This provides a unique bulk geochemical composition for any given
grain size distribution. As a final step, these bulk chemical compositions
are clr-transformed and noise is added.
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Fig. 5A shows the simulated grain-size record, whereas Fig. 5B
shows the final bulk geochemical record, expressed in proportions.
The residual grain-size and geochemical signals are shown in Fig. 5 (C
and D). Since the rank of the grain-size data is one, and the geochem-
istry is directly inferred from the grain size, the shared signal carried
by the first vectors in both solution spaces explains all systematic var-
iation. As a consequence, Fig. 5D reflects only the superimposed noise,
centred around the mean bulk chemical composition. We derive the
dominant signal in the residual and the shared geochemical signal
using Principal Component Analysis (PCA). The Principal Components
(PCs) are obtained by means of a Singular Value Decomposition
(SVD) (Press et al., 1994). Figs. 5E and 5F show the scores on PC1 of
the shared and the residual signal, respectively. Gray bars represent
95% confidence limits derived from the imposed noise. Note that in
the PC1 scores of the residual geochemical signal, the proportion of
observations plotting outside of these limits is around 5%, which
leads to the conclusion that there is no significant geochemical
variability. The scores of the shared geochemical signal, on the other
hand, show significantly more exceedences, indicating a strong
correlation between the shared geochemical signal and the grain size.

Although the individual records of grain size and bulk chemistry
(Fig. 5, A and B) display variation which may be difficult to interpret,
the model returns that they contain the same information, i.e., the
common size-composition trend. Using the model, this common
trend was successfully eliminated from the data without any prior
knowledge.
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Fig. 4. In the synthetic example, the fingerprints of source 1 and source 2 are parameterised
ratio linear functions can be transformed back to proportions by means of the inverse clr-t
4.2. Synthetic example 2

In the second example, we increased the complexity of the simulat-
ed data by imposing random mixing of two distinct sediment sources.
The size-composition function of the additional source is shown in
Fig. 4 (C and D). The grain size distributions were simulated according
to the procedure outlined in example 1, and therefore contain no infor-
mation about provenance (Fig. 6B). A real-world analog of this example
is a river with two tributaries, draining different parent-rock types. We
assume that the proportional contribution of the tributaries have varied
over time and we repeatedly sampled the river-mouth sediments. The
grain-size distributions of these sediments reflect the hydrodynamic
conditions under which the sediments have been transported, and
thus contain no information regarding provenance.

As shown in Figure 6B, dataset 2 exhibits a geochemical record
which does not appear to be very different from that of dataset 1.
This is not surprising because the size-composition functions of the
two sources are very similar (see Fig. 4). As a result, differences in-
duced by variations in the source are overshadowed by variability in-
duced by grain size variations. In contrast to example 1, the residual
geochemical record suggests significant variability independent
from the grain size (Fig. 6D). This is confirmed by the scores on PC1
of the residual geochemical record, which exceed the 95% confidence
interval of the superimposed noise. Without knowing the underlying
structure, we would therefore conclude that there is evidence for
grain-size independent geochemical variability.
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by a log-ratio linear function between grain size and composition (A and C). These log-
ransformation (B and D).
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If our aim is to infer either grain size or provenance from the raw
geochemical data, a straightforward approach is to analyse the
scores on PC1 (i.e., the main direction of variance). Fig. 7A shows
the relation between these scores and the mean grain size, whereas
Fig. 7B shows the relation between these scores and the provenance
(i.e., the contribution from source 1). In both cases there is a weak
correlation.

Instead of using the rawdata,wemay also use themodel outcome to
derive proxies for both grain size and provenance; PC1 scores of the
shared geochemical record represent the grain-size proxy, whereas
the residual geochemical record may serve as a provenance proxy. The
relation between the grain-size proxy, and the grain size and (known)
source contributions, respectively, are shown in Fig. 7 (C and D). Fig. 7C
demonstrates that the grain-size proxy correlates strongly with the
mean grain size and does not contain any provenance information. The
provenanceproxy (Fig. 7, E and F), on the other hand, varies independent-
ly from the mean grain size, but records the known changes in prove-
nance perfectly.
5. Results

We applied the model to the data sets corresponding to the three
Quaternary marine sediment cores. However, before studying the
model outcome, we analyse the correlation structure between com-
position and the mean grain size in each of the three cores (see Fig.
8). The steepness of the fitted log-ratio linear models of cores
GeoB7920-2 and GeoB9508-5 in particular, demonstrate that the geo-
chemical composition strongly depends on the mean grain size. Based
on these plots, we also conclude that our data shows no systematic
departures from the compositional linear trend, which justifies the
use of a log-ratio linear approach.

Fig. 8D shows Pearson's correlation coefficients between the differ-
ent log-ratio-transformed chemical elements and the mean grain size.
In addition, the correlation coefficients between the mean grain size
and the PC1 scores, derived from the raw geochemical data, are
shown. In core GeoB9508-5, the high correlation coefficient (>0.9) be-
tween these PC1 scores and themean grain size demonstrates the large
portion of redundancy between geochemistry and grain size. In core
GeoB7139-2, on the other hand, the correlation coefficient of 0.15
shows that grain-size control on the geochemical variability is low;
only Ti shows a fairly strong (negative) correlation with the mean
grain size. It should be noted, though, that the total geochemical vari-
ance in this core is also very low.

After applying the proposed model to the three cores, significance
tests on the residual records (α=5%) allows us to identify additive
log-ratio pairs which show significant residual variability (see Table 2).
The residual signals having the highest signal-to-noise ratio are shown
in Figs. 9 and 10. In contrast to the synthetic example, the residuals are
plotted without their mean added, so they simply reflect the difference
between modeled and observed signals. An exception is made for
k=0; since these patterns are by definition only a centred version of
the input data, we show the raw data instead.

The downcore plots demonstrate that the variance of the residuals is
largely controlled by the number of removed components (the order of
the residuals). In addition, the cores show a marked difference, in the
sense that the third-order residual geochemical signal strength ranges
from weak (GeoB7920), to strong (GeoB9508-5). Note that the limited
number of chemical elements (D=5) used in our study limits themax-
imum number of removed shared signals to four.
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6. Discussion

6.1. Correlation between composition and grain size

The correlation coefficients in Fig. 8D show that in cores
GeoB7920-2 and GeoB9508-5, Al and Fe correlate positively with the
mean grain size whereas Si correlates negatively with the mean
grain size. These trends are in line with typical chemical weathering
trends, leading to relative enrichment of clay-minerals (reflected by
Al and Fe) in the fine fraction, and enrichment of quartz (reflected
by Si) in the coarse fraction. In core GeoB7139-2 the correlation struc-
ture is different, in the sense that Si shows a weak, but positive corre-
lation with the mean grain size. Moreover, Ti is the only element
closely linked to grain size, reflected by the highly negative correlation
with the mean grain size in phi-units.

The weak grain-size control on the geochemical composition in this
core may be due to continental climate conditions. Core GeoB7139-2 is
situated close to the Atacama desert, which is characterised by extreme
aridity (Stuut and Lamy, 2004; Kaiser et al., 2008). The absence of chem-
ical weathering under arid conditions implies that the size-composition
trend primarily reflects mechanical weathering, whose impact on the
size-composition trend is apparently small. The weak, but positive
correlation between Si and the mean grain size may be attributable to
additional input of biogenic silica, which obviously disturbs the initial
size-composition trend of the terrestrially derived sediments.

Based on these results, we may select a proxy for grain size by
choosing a ratio of an element showing a high correlation coefficient,
and an element showing a very low (i.e., negative) correlation coeffi-
cient with the mean grain size. This yields Al/Ti (GeoB7139-2), Ti/Si
(GeoB7920-2) and Fe/Si (GeoB9508-5). Differences among these
proxies illustrate the empirical nature of grain-size proxies, and
other geochemically-based proxies in general.

6.2. Residuals analysis

In order to evaluate themodeling results in a statistically correctman-
ner,we analyse only the residual log-ratios forwhich the significance test
yields a p-value smaller thanα (=5%). (see Table 2). The test yields that,
depending on the order, the cores reflect residual patterns of Ti
(GeoB9508-5), K (GeoB7920) and Al/K (GeoB7139-2). Whereas in the
synthetic example, the number of dimensions of the grain-size data
was exactly known, in reality this is certainly not the case. It is obvious
that the more shared signals we remove from the data, the smaller the
variance of the residual records. The limitations of our data are reached
at D−1, which equals four in these data set (we measured only five ele-
ments). At this point, there is still some residual grain-size variability.

Following the principle of parsimony, we should stop subtracting
signals when the shared grain size variability is within acceptable limits
of the measured grain variability, or when the k-th order shared grain
size signal does not correlate with the k-th order shared geochemical
signal. This means that quantitative control on the model outcome
does not only require uncertainties of the geochemical data, but also
of the grain size data. Unfortunately, we can only infer the uncertainties
associated with the geochemical data, meaning that we are not able to
identify the ‘true’ order of the residuals. However, we can interpret
the results for the different cores relative to each other.

The downcore records in Figs. 9 and 10 suggest that from these three
cores, GeoB9508-5 contains the strongest residual signals. The same is
reflected by the large number of log-ratios that are identified as signif-
icant (Table 2). We also observe that within one model order, Al/Ti,
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Fe/Ti and Si/Ti are highly correlated. This suggests that the residual var-
iability is attributable to changes in Ti, rather than the other elements.
Apparently, sediments with a constant grain-size distribution have dif-
ferent Ti-concentrations. This result is supported by analyses of present-
day dust samples collected off northwest Africa; dust samples with the
same mean grain size showed different Al/Ti values (Log(Al/Ti)
∼ [2.65,2.9]; Stuut et al., 2005). Moreover, the variability of these Al/Ti
values is in the same range as the residuals observed in this study.

Finally we observe that for every alternative model (i.e., model
outcome of a certain order), the residual Al/Ti, Fe/Ti and Si/Ti
show several profound dips, suggesting a relative Ti-enrichment.
Based on the consistency of this pattern among the different
model orders, the plausibility of Ti reflecting residual variability
and the fact that the fit to the grain size exhibits no significant im-
provements when subtracting four instead of three components, we
assume that the ‘true order’ of the residuals in core GeoB9508-5 is
three. For this order we obtain significant Al/Ti, Fe/Ti, Si/Ti, as well
as K/Si residuals.
The residual grain size signals in cores GeoB7139-2 and GeoB7920-2
(Fig. 9) suggest that at least three common patterns should be removed
to obtain a grain-size invariant geochemical record. At this point, there
are no significant residual geochemical signals present in the data (see
Table 1). As a result, we conclude that these cores contain no significant
residual geochemical variability.
6.3. Paleo-climatological interpretation

In order to relate the residuals to the proposed size-independent
mechanisms, mineralogical information is indispensable. Although
mineralogical data is not available, chemical elements can be associated
with mineral phases, though with a varying level of confidence. In core
GeoB9508-5, K most likely, but not exclusively, resides in K-feldspar
whereas Si resides in detrital quartz and possibly in opal. Because (1)
the signal-to-noise ratio of the associated residual signal (i.e., K/Si) is
60-80% smaller than that of the Ti residuals, and (2) we cannot link
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these elements to minerals with an acceptable level of confidence, we
do not attempt to interpret this residual signal.

Ti can bemore confidently associated withmineral phases; it is con-
sidered to be of exclusively terrigenous origin (Murray and Leinen,
1996) and mostly resides in heavy minerals such as sphene, rutile and
anatase (Spears and Kanaris-Sotiriou, 1976). These minerals have a
high density relative to minerals such as quartz, feldspars and clays,
which make up the bulk of siliciclastic sediments. Although Ti-rich
heavy minerals are considered essentially inert components (Young and
Nesbitt, 1998), authigenic formation of these minerals have been de-
scribed under highly specific conditions (Goldberg and Arrhenius,
1958; Pe-Piper et al., 2011). However, given the fact that the observed
Table 2
The significant residuals of the different cores (α=5%). A ‘*’ indicates that all elements
(except the numerator) exhibit significant residuals.

Core Order Significant residuals

GeoB7139-2 1 Al/K
GeoB7139-2 2 Al/K
GeoB7139-2 3 None
GeoB7139-2 4 None
GeoB7920-2 1 K/Ti, K/Al
GeoB7920-2 2 None
GeoB7920-2 3 None
GeoB7920-2 4 None
GeoB9508-5 1 Al/*, Ti/*, K/Si
GeoB9508-5 2 Al/Si, Ti/*, K/Si
GeoB9508-5 3 Al/Ti, Fe/Ti, Si/Ti, K/Si
GeoB9508-5 4 None
Al/Ti are approximately equal to Al/Ti values found in othermarine sed-
iment cores located in the Atlantic (Zabel et al., 1999), we consider dia-
genetic modification a highly unlikely cause for the observed Ti
residuals. This implies that they may be explained by any of the postu-
lated grain-size independent processes that take place before deposi-
tion such as weathering, density/shape sorting and mixing.

In the area of core GeoB9508-5, contrasting patterns of deposition
have been linked to climate changes (Mulitza et al., 2008). Dry and
cold periods were characterised by strong winds and low fluvial sed-
iment input, whereas the opposite holds for relatively warm and
humid intervals (e.g., Sarnthein, 1978; deMenocal et al., 1993).
Hence, we are dealing with a situation in which the grain-size charac-
teristics of the sediments, and therefore also their transport mecha-
nisms, are likely to correlate with provenance. We make use of this
knowledge by dividing the residual geochemical data set into
aeolian-dominated, fluvial-dominated, and mixed sediments sam-
ples, based on the median grain size (P50 of the cumulative grain
size distributions) with cutoffs set at 5.5 and 6.5 phi-units
(Fig. 11A). The relation between transport mechanism and residual
Ti/Al is shown in Fig. 11B. With the null hypothesis being that the
Log(Ti/Al) in the fluvial and aeolian source are samples from identical
distributions having the same median, we estimate the probability
under the null hypothesis using a Wilcoxon rank sum test
(Hollander and Wolfe, 1973). Based on this p-value and a significance
level of 5%, we conclude that the third-order Ti/Al residuals are relat-
ed to the transport mechanism (and therefore also the Al/Ti residuals,
because log-ratios are symmetrical Weltje and Tjallingii, 2008).

We can postulate several scenarios that may have produced the
residual patterns, which differ with respect to the underlying



GeoB7139-2, Log(Al/K) GeoB7920-2, Log(K/Ti)GeoB7139-2, Grain size GeoB7920, Grain size

2 4 6 8

1.25
1.3

1.35
1.4

1.45

Depth [m] Depth [m] Depth [m] Depth [m]

Depth [m] Depth [m] Depth [m] Depth [m]

Depth [m] Depth [m] Depth [m] Depth [m]

Depth [m] Depth [m] Depth [m] Depth [m]

Depth [m] Depth [m] Depth [m] Depth [m]

0 2 4 6 8

−0.1

0

0.1

0 2 4 6 8

−0.1

0

0.1

0 2 4 6 8

−0.1

0

0.1

0 2 4 6 8

−0.1

0

0.1

gs
 [φ

]

 

 

2 4 6
4

6

8

10

0.01

0.02
0.03
0.04

gs
 [φ

]

 

 

2 4 6
4

6

8

10

−4

−2

0

2

4
x 10

gs
 [φ

]

 

 

2 4 6
4

6

8

10

−4

−2

0

2

4
x 10

gs
 [φ

]

 

 

2 4 6
4

6

8

10

−4

−2

0

2

4
x 10

gs
 [φ

]

 

 

2 4 6
4

6

8

10

−4

−2

0

2

4
x 10

−3

−3

−3

−3

5 10 15

1.2

1.4

1.6

0

0

5 10 15

−0.2

0

0.2

0 5 10 15

−0.2

0

0.2

0 5 10 15

−0.2

0

0.2

0 5 10 15

−0.2

0

0.2

gs
 [φ

]

 

 

5 10 15

6

8

10

0.01

0.02

0.03

gs
 [φ

]

 

 

5 10 15

6

8

10

−4

−2

0

2

4
x 10

−3

gs
 [φ

]

 

 

5 10 15

6

8

10

−4

−2

0

2

4
x 10

−3

gs
 [φ

]

 

 

5 10 15

6

8

10

−4

−2

0

2

4
x 10

−3

gs
 [φ

]

 

 

5 10 15

6

8

10

−4

−2

0

2

4
x 10

−3

0
(raw data)

1

2

3

4

Order 

Fig. 9. The plots show the strongest (in terms of signal-to-noise ratio) downcore residual signals in cores GeoB7139-2 and GeoB7920-2, with the model order ranging between zero
(the raw data) and four. The residual geochemical signals are presented as variations around the mean, with a gray bar indicating a 95% confidence limit. The residual grain size
distributions are presented as the difference between the raw and modeled clr-transformed grain size distributions.

0
(raw data)

1

2

3

4

GeoB9508-5, Log(Si/Ti)GeoB9508-5, Log(Al/Ti)Order GeoB9508-5, Grain sizeGeoB9508-5, Log(Fe/Ti)

2 4 6 8
2.4
2.6
2.8

3
3.2

Depth [m] Depth [m] Depth [m] Depth [m]

Depth [m] Depth [m] Depth [m] Depth [m]

Depth [m] Depth [m] Depth [m] Depth [m]

Depth [m] Depth [m] Depth [m] Depth [m]

Depth [m] Depth [m] Depth [m] Depth [m]

0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

0 2 4 6 8

0 2 4 6 8

2 4 6 8

3.4
3.6
3.8

4
4.2

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

2 4 6 8

1.5

2

2.5

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

gs
 [φ

]
 

 

2 4 6 8

6

8

10

0.01

0.02

0.03

gs
 [φ

]

 

 

2 4 6 8

6

8

10

−4

−2

0

2

4
x 10

−3

gs
 [φ

]

 

 

2 4 6 8

6

8

10

−4

−2

0

2

4
x 10

−3

gs
 [φ

]

 

 

2 4 6 8

6

8

10

−4

−2

0

2

4
x 10

−3

gs
 [φ

]

 

 

2 4 6 8

6

8

10

−4

−2

0

2

4
x 10

−3

Fig. 10. The plots show the three strongest downcore residual signals (the signal-to-noise ratio decreases from left to right) in cores GeoB9508-5, with the model order ranging
between zero (the raw data) and four. The residual geochemical signals are presented as variations around the mean, with a gray bar indicating a 95% confidence limit. The residual
grain size distributions are presented as the difference between the raw and modeled clr-transformed grain size distributions.

145M.R. Bloemsma et al. / Sedimentary Geology 280 (2012) 135–148



A B

F
lu

vi
al

 
pr

ov
en

an
ce

A
eo

lia
n 

pr
ov

en
an

ce

−3.1 −3 −2.9 −2.8 −2.7 −2.6 −2.5
Log(Ti / Al)

0 2 4 6 8 10
4

4.5

5

5.5

6

6.5

7

7.5

8

Depth [m]

M
ed

ia
n 

gr
ai

n 
si

ze
 [φ

]

Fig. 11. As indicated in A, we partitioned the data into fluvial, aeolian andmixed provenance, based on themedian grain size. For both the fluvial and aeolian sediment, we show the residual
Ti/Al in plot B. Based on the p-value derived from theWilcoxon rank sum test, and a significance level of 5%, we conclude that the third-order residuals are related to the transportingmedium.

146 M.R. Bloemsma et al. / Sedimentary Geology 280 (2012) 135–148
assumptions. If, for instance, the sediment deposited in the sink has
been exclusively derived from one source, and the conditions under
which the sediment was transported were constant in time, the resid-
ual signal reflects varying climatic conditions in the source area(s). An
alternative scenario is that the residuals reflect the different areas
that have served as a source, rather than varying conditions within
the source area(s). In both cases, the underlying assumption is that
the sediment is transport-invariant, i.e., that it has been transported
under the same hydro- and aerodynamic conditions (Weltje, 2004).
Another scenario is that the residual variability is induced by mixing
of fluvial and aeolian sediment and/or sorting processes during either
river- or wind-transport. This scenario is characterised by the as-
sumption of "provenance-invariance".

It is evident that, without additional constraints, there is no
unique solution to this problem. Even when adopting the (strong) as-
sumption that the source area and the climatic conditions were con-
stant in time, we cannot ascribe the residuals to either selective
transport or mixing. This is due to the fact that preferential entrain-
ment of Ti-bearing minerals in the windblown sediment due to in-
creased wind strength (Sarnthein, 1978; Rea, 1994) will have the
same effect on Ti residuals as mixing of Ti-rich windblown sediment
and Ti-poor riverine sediment having a constant geochemical compo-
sition. Moreover, Stuut et al. (2005) showed that even on a short
time-scale (days), both source area and pathway length (which con-
trols selective transport) substantially vary, which means that assum-
ing provenance-invariance, as well as transport-invariance, are both
not defendable. We therefore conclude that, on the basis of these
data, it is impossible to unambiguously interpret the residuals in
terms of the proposed grain-size independent mechanisms.

6.4. General discussion

In the analysed cores, the elements showing the strongest correla-
tion with the mean grain size were Ti (GeoB7139-2) and Si
(GeoB7920-2 and GeoB9508-5). In addition, Ti was designated as
the main residual component in GeoB9508-5. This leads to the con-
clusion that geochemistry-based proxies for mean grain size depend
on the specific setting, which automatically implies that the same is
true for geochemistry-based proxies considered to be associated
with other processes. We showed that, using the model and a set of
overlapping grain-size and geochemical observations, these proxies
can be identified in a robust way. However, whether or not signals as-
sociated with the size-independent processes can be inferred from
the data depends on the magnitude of this signal, relative to the un-
certainty in both data sets. Likewise, more significant signals may
appear if the uncertainty of the input data will be reduced. Further-
more, applying the model to a more comprehensive set of geochem-
ical variables is more likely to reveal informative residual patterns.

As for the interpretation of bulk geochemical records in general, inter-
pretation of the residuals is difficult because they may reflect numerous
different processes. In addition, elements cannot always be uniquely as-
sociated with a single mineral. We can thus not provide a ‘cookbook’
for the interpretation of the residuals. However, by correcting the data
for grain size, at least one hypothesis can be eliminated, i.e., that the geo-
chemistry only reflects grain-size variations.
7. Conclusions

The joint analysis of bulk geochemical records and grain-size dis-
tributions allows us to decompose the geochemical record into a
grain-size independent and a grain-size related part. This method
therefore facilitates identification of grain-size proxies, and interpre-
tation of residual geochemical signals in terms of weathering, shape/
density sorting, mixing and diagenesis. Differences between the size-
compositional trends highlight the need for empirical models; in
core GeoB7139-2 (offshore Chile) Ti and Si were, respectively, strong
and weak proxies for the mean grain size whereas in core
GeoB9508-5 (offshore Senegal) it was the other way around. More-
over, the model showed that the residual Ti in the case of core
GeoB9508-5 varies independently of the grain size, and discriminates
between the two known sources (fluvial and aeolian). Several hypoth-
eses were postulated on the basis of this model outcome although
they could not be confirmed nor rejected without additional informa-
tion. From the synthetic example and the case study we conclude that
multi-proxy analysis can be formalised using multivariate methods
(e.g., Partial Least Squares). However, to apply the methodology in fu-
ture studies, comprehensive quantification of the uncertainties in
grain-size and geochemical data is necessary.
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Appendix A. Joint modelling of grain size and geochemical
composition

Bulk chemistry and grain-size distribution are both compositional
data. The compositional nature of a data set spanning D components
implies that (Aitchison, 1986):

x ¼ ðx1; x2; ::::xDÞ′; xi > 0;
XD
i¼1

¼ κ ðA:1Þ

where κ may be 1, 100 or 1.000.000, depending on the units of mea-
surement. The constant-sum and positivity constraint make that a
D-part compositional dataset x={x1,x2,x3,…xD} does not span a
real space RD, but the so called D-part simplex, or SD, which has
rank D–1.

From a modelling perspective, the most important implication of
the compositional nature is that classical statistical methods cannot
be applied. Instead, processing of compositional data should be
done using log-ratio transformations, or log-ratios. For multivariate
statistical analysis, the data should be centred log-ratio (clr) trans-
formed (Aitchison, 1986):

y ¼ clr xð Þ ¼ log
x1
g xð Þ ; log

x2
g xð Þ ;…; log

xD
g xð Þ

� �
ðA:2Þ

where g(x) denotes the geometric mean over all components.
The objective of this study is to decompose the geochemical re-

cord into a part which is correlated with grain size, and a part
which varies independently from the grain size. We achieve this by
finding a basis Q in RD (the clr-transformed geochemical solution
space) which maximizes the geochemical variance explained by the
grain size. A multivariate method to maximize the common covari-
ance, and obtain this basis Q, is Partial Least Squares, or PLS (Wold
et al., 1982), which is the method being used in this study.

If we have measured both the grain-size distribution X (L grain-
size classes) and the geochemical composition Y (D variables) of a
set of m specimens, we fit the model on data matrices X* and Y*
which contain the grain size and bulk chemical composition of this
set of samples, respectively. If the mean is subtracted from these
data matrices, we obtain Xc * and Yc *. In this study, we then use the
SIMPLS algorithm (de Jong, 1993) to calculate the PLS matrix decom-
position:

Xc� ¼ T�P
T

Yc� ¼ U�Q
T ðA:3Þ

where T and U are the m×D and m×L scores, and P and Q are the
loadings of size D×D and L×L, respectively. To ensure the decompo-
sition to be orthogonal, the bases P and Q are orthogonalised using
Singular Value Decomposition (Press et al., 1994) after which the
score matrices T* and U* are recalculated (for the methodology, see
Eq. A.5). Then, we determine the maximum number of components
that may be removed by performing a test on the correlation between
the scores T* and U*. Significance of correlation between the geochem-
ical and grain-size scores on the k-th basis vector (i.e., the k-th col-
umn of T* and U*) is tested using the following criterion (Kendall
and Stuart, 1973):

rj j
ffiffiffiffiffiffiffiffiffiffiffiffi
m−2
1−r2

s
> t−1 m−2; pð Þ: ðA:4Þ

We derive r for any order k, where r is Pearson's correlation coef-
ficient between the k-th column of T∗ and U∗ (i.e. the projection of the
data on the k-th basis vector). The right-hand side is the inverse t-
distribution with probability p and m−2 degrees of freedom. Given
a level of confidence α and p=1−α, we remove the first k shared
signals if for k, the criterion in Eq. A.4 is met.

Now the model order and the model parameters (i.e., the linear
bases) are calculated, we can apply the model to all grain-size and
geochemical observations in the data set, i.e., also the observations re-
lated to samples contained in either the grain-size or the geochemical
data set. Because PT and QT are both orthonormal, it holds that
(PT)−1=(PT)T=P and (QT)−1=(QT)T=Q. This, in turn, means that
the scores of all observed grain-size distributions and geochemical
compositions on their corresponding bases can be derived by matrix
product:

T ¼ XcP
U ¼ YcQ

ðA:5Þ

Subsequently, the shared signal in both datasets of rank k can be
derived by means of a reduced-rank approximation. This implies
that we use only the first k columns of both the loadings P and Q,
and the scores T and U:

X̂ c

� �
k
¼ TkP

T
k

Ŷ c

� �
k
¼ UkQ

T
k

ðA:6Þ

The ‘residuals’ are obtained by subtracting the common variability
in both data sets from the input data:

X̂ c

� �
k
¼ Xc− X̂ c

� �
k

Ŷ c

� �
k
¼ Yc− Ŷ c

� �
k

ðA:7Þ

Finally, we may add the mean again to form ðX̂Þk and ðŶ Þk, so that
the residual signals centre around the mean of their corresponding
raw data matrix.
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